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Abstract:  Let {Xj : j ≥ −m + 1} be a {0, 1} valued homogeneous Markov chain 

of order m. For i = 0,−1, . . . ,−l + 1, we will set Ri = 0. Now if we define Ri = 
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 then Ri = 1 implies that an l-look-back run of length k 

has occurred starting at i. Here Ri is defined inductively as a run of 1’s starting at i, 

provided that no l-look-back run of length k occurs, starting at time i − 1, i − 2, . . . , 

i − l. We obtain the conditional distribution of the number of runs of a fixed length 

at least k1 until the stopping time i.e. the r-th occurrence of the l-look-back run of

length k where k1 ≤ k. and it’s probability generating function. The number of 

runs of length at least k1 until the stopping time has been expressed as the sum of 

r independent random variables with the first random variable having a slightly 

different distribution.
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1 Introduction

Feller [1968] introduced the concept of runs as an example of a renewal event and since
then the theory of distributions of runs has been developed extensively by researchers. In
order to study various run related statistics in details, many techniques such as method
of conditional p.g.f.s (see Ebneshahrashoob & Sobel [1990]) and Markov embedding
technique (see Fu and Koutras [1994]) etc have been developed and applied effectively.

We consider the set up of an m-th order homogeneous {0,1}-valued Markov chain
and we assume that the initial condition {X0 = x0, X−1 = x1, . . . , X−m+1 = xm−1} is
given. The random variable Xn assumes value 1 when the outcome of the n-th trial
is success and value 0 when it is failure. A run of length k is defined as a consecutive
occurrence of k successes.

The marginal distributions of number of failures, successes and success-runs of length
less than k until the first occurrence of consecutive k successes when the underlying
random variables are either i.i.d. or homogeneous Markov chain or binary sequence of
order k was studied by Aki and Hirano [1994]. Under the similar set up, Aki and Hirano
[1995] derived the joint distributions of number of failures, successes and runs of success.
Hirano et. al. [1997] obtained interesting results related to the distributions of number
of success-runs of length l until the first occurrence of the success-run of length k for an
m-th order homogeneous Markov chain where m ≤ l < k under various counting schemes
like runs of length k1, overlapping runs of length k1, non-overlapping runs of length k1
etc. The joint distributions of the waiting time and the number of outcomes such as
failures, successes and success-runs of length less than k for various counting schemes
of runs under the set up of an m-th order homogeneous Markov chain was explored by
Uchida [1998]. Martin [2005] obtained the distribution of the number of successes in
success runs of length at least k for a higher order Markovian sequence.

The l-look-back counting scheme for runs was introduced by Anuradha [2022a]. In
this scheme, if a run has been counted starting at time i, i.e., {Xi = Xi+1 = · · · =
Xi+k−1 = 1}, then no runs can be counted till the time point i+ l and the next counting
of runs can start only from the time point i + l + 1. This scheme is repeated every
time a run is counted. In other words, if a run is counted starting at time i, there are
k-consecutive successes from the time point i and no runs of length k can be counted
which start at the time points i − 1, i − 2, . . . , i − l. Clearly, if l = 0, this counting
scheme of run matches exactly with the counting of overlapping runs of length k, while
if we consider l = k− 1, this counting scheme results in the counting of non-overlapping
runs of length k. Under the set up of m-th order homogeneous Markov chain, Anuradha
[2022a] established that the waiting time distribution of the n-th occurrence of the
l-look-back run of length k converges to an extended Poisson distribution when the
system exhibits strong propensity towards success. Under the same set up, central limit
theorem was established for the number of l-look-back runs of length k till the n-th
trial. Anuradha [2022b] obtained the conditional distribution of the number of runs
of length exactly k1 till the r-th occurrence of l-look-back run of length k when the
underlying random variables follow an m-th order Markov chain and identified the form
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of conditional distribution.
In study of DNA sequences, tandem repeats are short lengths of DNA that are

repeated multiple times within a gene and repetitions are directly adjacent to each
other. Due to the significance of tandem repeats in the biological studies, much work
has been devoted to developing algorithms for their detection. A statistic based on the
number of runs of length at least k1 along with the related distributions would be useful
in studying tandem repeats . But due to complex dependency structure, it is often very
difficult to find the exact distributions of number of runs of length at least k1. Therefore,
one can obtain approximate distributions of such statistic to make meaningful statistical
conclusions.

In this paper, we take a different point of view and study the distribution of number
of runs of length at least k1 until a stopping time. Surprisingly, this turns out to be
much simpler and can be identified through well known distributions, namely Geometric
and Binomial distribution. The stopping time that we consider is the r-th occurrence
of the l-look-back run of length k, where k1 ≤ k. As r increases, the stopping times
will approach ∞. Hence, this may be used to get an alternate approximation for the
distribution of number of runs of length at least k1. For example, one may try and find
the law of large numbers or a central limit theorem for the number of runs of length at
least k1 using the conditional distribution.

The next section specifies the important definitions and the main theorem and corol-
laries related to the distribution of the number of runs of length at least k1 until the r-th
occurrence of the l-look-back run of length k where k1 ≤ k. Section 3 formalises the basic
set up for deriving the results. Section 4 is devoted to the proof of the main Theorem.
The conditional probability generating function method has been employed to prove the
main result.The problem has been recast into a first order homogeneous Markov chain
taking values in a finite set and strong Markov property has been used to derive the
recurrence relation involving the probabilities of the number of runs of length at least
k1 until the stopping time. This relation is used to establish the recurrence relation of
the probability generating functions which is solved to obtain the explicit expression.

2 Definitions and Statement of Results

Let X−m+1, . . . , X0, X1, . . . be a sequence of stationary m-order {0,1} valued Markov
chain. Assume that the states of X−m+1, . . . , X0 are known i.e., x0, x−1, . . . , x−m+1 are
known and we take the initial state as X0 = x0, X−1 = x−1, . . . , X−m+1 = x−m+1}.

Define the set Ai = {0, 1, . . . , 2i−1} for any i ≥ 0. It is clear that Ai and {0,1}i can
be connected by the mapping x = (x0, x1, . . . , xi−1) −→

∑i−1
j=0 2

jxj . Since, {Xn : n ≥
−m+ 1} is mth order Markov chain, we have the transition probabilities

px = P(Xn+1 = 1|Xn = x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) (1)

where x =
∑m−1

j=0 2jxj ∈ Am, for any n ≥ 0. Therefore, we have qx = P(Xn+1 = 0|Xn =
x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) = 1 − px. We assume that 0 < px < 1 for all
x ∈ Ai.
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Definition 1 (l-look-back run) (Anuradha [2022a]) Fix two integers k ≥ 1 and 1 ≤
l ≤ k − 1. We set Ri(k, l) = 0 for i = 0,−1, . . . ,−l + 1 and for any i ≥ 1, define
inductively,

Ri(k, l) =

i−l
j=i−1

(1−Rj(k, l))

i+k−1
j=i

Xj . (2)

If Ri(k, l) = 1, we say that a l-look-back run of length k has been recorded which started
at time i.

It should be noted that for an l-look-back run to start at the time point i, we need to
look back at the preceding l many time points, i.e., i− 1 to i− l, none of which can be
the starting point of an l-look-back run of length k.

Next we define the stopping times where the r-th l-look-back run of length k is
completed.

Definition 2 (Anuradha [2022b]) For r ≥ 1, the stopping time τr(k, l) be the (random)
time point at which the r-th l-look-back run of length k is completed. In other words,

τr(k, l) = inf{n :

n
i=1

Ri(k, l) = r + k − 1}. (3)

Before we introduce runs of length at least k, we need the concept of run of length
exactly k.

Definition 3 (Runs of length exactly k) (see Anuradha [2022b]) When k(≥ 1) consec-
utive successes, either occur at the beginning of the sequence or end of the sequence or
bordered on both sides by failures, contribute towards the counting of a run then we call
it a run of length exactly k.Note that when there are more than k consecutive successes
then it is not counted as run of length exactly k.

We may represent this mathematically as follows:

R
(E;k)
i =




k
j=1Xj(1−Xk+1) if i = 1

(1−Xi−1)
i+k−1

j=i Xj(1−Xi+k) if 1 < i < n− i+ 1

(1−Xn−k)
n

j=n−k+1Xj if i = n− k + 1.

Note here that R
(E;k)
i = 1 if and only if a run of length exactly k starts at time

point i. Anuradha [2022b] studied the distribution of runs of length exactly k1 until the
stopping time τr(k, l).

Now, we define the runs of length at least k as follows:

Definition 4 A run of length at least k starts at time point i ≥ 1, if at least one run of
length exactly q starts at i for some q ≥ k.
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This may be mathematically stated as follows: for i ≥ 1, set

S
(L;k)
i =

n∑
q=k

R
(E;q)
i . (4)

It should be noted that S
(L;k)
i = 1 if and only if a run of length at least k starts at i.

In this paper, we study the number of runs of length at least k1 till the stopping
time τr(k, l) (see Definition (2). Fix any constant k1 ≤ k. For each r ≥ 1, we define the
random variable

N (L)
r (k1) := N

(L)
τr(k,l)

(k1) =

τr(k,l)∑
i=1

S
(L;k)
i (5)

as the number of runs of length at least k1 until the stopping time τr(k, l).
Let us consider the following example to understand the concepts. The following

sequence of 0’s and 1’s of length 30 was observed:

110101110111110111010110110111.

For k = 3 and l = 1, it should be noted that, R6(3, 1) = R10(3, 1) = R12(3, 1) =
R16(3, 1) = R28(3, 1) = 1, while for other values of i, Ri(3, 1) = 0. Thus, stopping times
are given by τ1(3, 1) = 8, τ2(3, 1) = 12, τ3(3, 1) = 14, τ4(3, 1) = 18 and τ5(5, 1) = 30. For

k1 = 2, we observe that values of S
(L;2)
1 = S

(L;2)
6 = S

(L;2)
10 = S

(L;2)
16 = S

(L,2)
22 = S

(L,2)
25 =

S
(L,2)
28 = 1 and S

(L;2)
j = 0 for other values of j. Now the number of runs of length at least

2 until the r-th occurrence of 1-look-back run of length 3 can be easily found from the

above. Indeed, for r = 1, we have τ1(3, 1) = 8 and hence N
(L)
1 (k1) =

∑τ1(3,1)
i=1 S

(L,2)
i = 2.

Similarly, N
(L)
2 (k1) = 3 = N

(L)
3 (k1), N

(L)
4 (k1) = 4 and N

(L)
5 (k1) = 7.

We will use another random time T which we have introduced in (7). Though
the formal definition is provided later, this is time of the first occurrence of k1-many
consecutive successes. In the above example (for k1 = 2), it is clear that first occurrence
of 2 consecutive successes is observed at time T = 2.

Now, we define the probability generating function of N
(L)
r (k1). Let us set

ζ(L)r (s; k1) :=

∞∑
n=0

P(N (L)
r (k1) = n)sn. (6)

Now, we will state our main result.

Theorem 1 For any initial condition x ∈ Ai and k2 = k−k1 and k1 ≥ m, the probability

generating function of N
(L)
r (k1) is given by

ζ(L)r (s; k1) =

[ (
p2m−1

)k2s
1−

(
1−

(
p2m−1

)k2)s

][(
p2m−1

)l+1

+

(
p2m−1

)k2s
1−

(
1−

(
p2m−1

)k2)s
(
1−

(
p2m−1

)l+1
)]r−1

.
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The result provides a powerful representation of N
(L)
r (k1).

Corollary 1 Let {G(i)
L : i = 1, . . . , r} and {B(i)

L : i = 1, . . . , r} be two independent

sets of random variables with each G
(i)
L having a geometric distribution (taking values

in {0, 1, . . . , }) with parameter
(
p2m−1

)k2 and each B
(i)
L having a Bernoulli distribution

with parameter
(
1−

(
p2m−1

)l+1
)
, then we have

N (L)
r (k1)

d
=

(
1 +G

(1)
L

)
+

r∑
i=2

(
1 +G

(i)
L

)
B

(i)
L .

Indeed, it is easy to see that generating function of G
(i)
L , for i ≥ 1, is given by

(
p2m−1

)k2
1−

(
1−

(
p2m−1

)k2)s

and the generating function of B
(i)
L , for i ≥ 1, is given by

(
p2m−1

)l+1
+ s

(
1−

(
p2m−1

)l+1
)
.

Therefore, the generating function of
(
1 +G

(i)
L

)
B

(i)
L is given by

(
p2m−1

)l+1
+

(
p2m−1

)k2s
1−

(
1−

(
p2m−1

)k2)s
(
1−

(
p2m−1

)l+1
)
.

From the independence of G
(i)
L and B

(i)
L for i ≥ 1, the corollary easily follows.

If we set k1 = 1, i.e., k2 = k−1, then N
(L)
r (k1) represents the total number of success

runs until τr(k, l).

Corollary 2 For the i.i.d. case or the Markov dependent case, the probability generating
function of the number of success runs till the r-th occurrence of the l-look-back run of

length k, i.e., N
(L)
r (1) is given by

ζ(L)r (s; 1) =

[ (
p2m−1

)k−1
s

1−
(
1−

(
p2m−1

)k−1
)
s

][(
p2m−1

)l+1

+

(
p2m−1

)k−1
s

1−
(
1−

(
p2m−1

)k−1
)
s

(
1−

(
p2m−1

)l+1
)]r−1

.
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3 Set-up

Now we outline the underlying set up which will be used in the subsequent sections to
establish the results. Let us define two functions f0, f1 : Ak1 → Ak1 by

f1(x) = 2x+ 1 (mod 2k1) and f0(x) = 2x (mod 2k1).

Further define a projection θm : Ak1 → Am by θm(x) = x (mod 2m). Now, set X−m =
X−m−1 = · · · = X−k1+1 = 0. Define a sequence of random variables {Zn : n ≥ 0} as
follows:

Zn =

k1−1
j=0

2jXn−j .

Since Xi ∈ {0,1} for all i, Zn assumes values in the set Ak1 . The random variables Xn’s
are stationary and forms a mth order Markov chain, hence we have that {Zn : n ≥ 0} is
a homogeneous Markov chain with transition matrix given by

P(Zn+1 = y|Zn = x) =





pθm(x) if y = f1(x)

1− pθm(x) if y = f0(x)

0 otherwise.

Note that Zn is even if and only if Xn = 0. This motivates us to define the function
κ : Ak1 → {0, 1} by

κ(x) =


1 if x is odd

0 if x is even.

Therefore, κ(Zn) = 1 if and only if Xn = 1. Hence, the definition of l-look-back run
can be described in terms of Zn’s as

Ri(k, l) =
i−1

j=i−l

(1−Rj(k, l))
i+k−1
j=i

κ(Zj).

Let us fix any initial condition x ∈ Am. We denote the probability measure governing
the distribution of {Zn : n ≥ 1} with Z0 = x ∈ Ak by Px. Since we have set X−m =
X−m−1 = · · · = X−k+1 = 0, we have Z0 = x.

In order to obtain the recurrence relation for the probabilities, we will condition the
process after the first occurrence of the run of length k1. Therefore, we consider the
stopping time T when the first occurrence of a run of length k1 ends, i.e., when we
observe k successes consecutively for the first time. More precisely, define

T := inf{i ≥ k1 :

i
j=i−k1+1

Xj = 1}. (7)

We would like to translate the above definition to Zi’s. It must be the case that when T
occurs, last k1 trials have resulted in success, which may be described by κ(Zj) = 1 for

6
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j = i− k1 + 1 to i. Therefore, ZT must equal 2k1 − 1. Since this is the first occurrence,
this has not happened earlier. So, T can be better described as

T = inf{i ≥ k1 : Zi = 2k1 − 1},

i.e., the first visit of the chain to the state 2k1 − 1 after time k1 − 1. Now, we note that
{Zn : n ≥ 0} is a Markov chain with finite state space. Further, since 0 < pu < 1 for
u ∈ Am, this is an irreducible chain; hence, it is positive recurrent. So we must have
Px(T < ∞) = 1. We observe that when the first occurrence of k consecutive successes
happen, we must have the occurrence of k1 successes previously since k1 ≤ k. Therefore,
we have Px(T < τ1(k, l)) = 1.

4 Number of runs of length at least k1

In this section, we study the runs of length at least k1. Define the probability, for
x ∈ Am, n ∈ Z,

g(L,x)r (n) = Px

(
N (L)

r (k1) = n
)
. (8)

We note that since N
(L)
r (k1) ≥ 1, Px

(
N

(L)
r (k1) = n

)
= 0 for n ≤ 0.

Next we obtain a recurrence relation between g
(L,x)
1 (n; k1).

Theorem 2 For n ≥ 0 and x ∈ Am, we have

g
(L,x)
1 (n; k1) =

(
1−

(
p2m−1

)k2)g(L,2m−2)
1 (n− 1; k1) +

(
p2m−1

)k2In(1) (9)

where Iv1(v2) is the indicator function defined by

Iv1(v2) =

{
1 if v1 = v2

0 otherwise.

Proof : If k2 = 0, i.e., k = k1, we must have have Px(N
(L)
1 (k) = 1) = 1. Clearly,

g
(L,x)
1 = 1 for all x ∈ Am satisfy the recurrence relation in (9).

Now, for the case when k2 = k−k1 > 0, first note that the occurrence of a look-back
run of length k, implies that a run of length at least k1 must have occurred. Therefore,

N
(L)
1 (k1) must be at least 1. In other words, g

(L,x)
1 (0; k1) = 0. So we may take n ≥ 1.

Now we have

g
(L,x)
1 (n; k1) = Px(N

(L)
1 (k1) = n)

= Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 2) +

k2−1∑
t=1

Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 1, . . . ,

ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2)

+ Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 1, ZT+2 = 2k1 − 1, . . . ,

7
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ZT+k2−1 = 2k1 − 1, ZT+k2 = 2k1 − 1). (10)

We consider the terms in the summation first. For any 1 ≤ t ≤ k2 − 1, we have,

Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 1, ZT+2 = 2k1 − 1, . . . ,

ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2)

= Px(N
(L)
1 (k1) = n | ZT+1 = 2k1 − 1, ZT+2 = 2k1 − 1, . . . ,

ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2)

× Px(ZT+1 = 2k1 − 1, ZT+2 = 2k1 − 1, . . . ,

ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2). (11)

The second term in (11) can be written as

Px(ZT+1 = 2k1 − 1, . . . , ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2)

= Px(ZT+t+1 = 2k1 − 2 | ZT+1 = 2k1 − 1, . . . , ZT+t = 2k1 − 1)

×
t∏

j=1

Px(ZT+j = 2k1 − 1 | ZT+1 = 2k1 − 1, . . . , ZT+j−1 = 2k1 − 1).

Now, for any 1 ≤ j ≤ t, T+j−1 is also a stopping time. We denote by FT+j−1, the σ-
algebra generated by the process Zn up to the stopping time T+j−1, and by F(T+j−1)+,
the σ-algebra generated by the process after the stopping time T + j − 1. Clearly,
{ZT+1 = 2k1 − 1, . . . , ZT+j−1 = 2k1 − 1} ∈ FT+j−1 and {ZT+j = 2k1 − 1} ∈ F(T+j−1)+.
Thus, by strong Markov property, we can write

Px(ZT+j = 2k1 − 1 | ZT+1 = 2k1 − 1, . . . , ZT+j−1 = 2k1 − 1)

= PZT+j−1
(ZT+j = 2k1 − 1) = P2k1−1(Z1 = 2k1 − 1) = p2m−1. (12)

A similar argument shows that

Px(ZT+t+1 = 2k1 − 2 | ZT+1 = 2k1 − 1, . . . , ZT+t = 2k1 − 1) = q2m−1. (13)

For the first term in (11), we note that T + t+1 is also a stopping time and {ZT+1 =
2k1 − 1, . . . , ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2} ∈ FT+t+1. Since Zτ1(k1) = 2k1 − 1, we
must have either XT−k1 = 0 and XT−j = 1 for j = 0, 1, . . . , k1 − 1 or T = k1. Further,
since Zτ1(k1)+j = 2k1 − 1 for j = 1, . . . , t and ZT+t+1 = 2k1 − 2, we also have XT+j = 1
for j = 0, 1, . . . , t and XT+t+1 = 0. Therefore, we have a sequence of 1′s of length k1 + t
with t > 0 which contributes to 1 run of length at least k1 and since there are no runs of
length k1 before T , by the very definition of T , we have that the number of runs of length
at least k1 up to time T + t+ 1 is 1. Since t ≤ k2 − 1, we have that T + t+ 1 < τ1(k, l).
Let us define Z ′

i = Zi+T+t+1 for i ≥ 0. Now, using the strong Markov property, we have
that {Z ′

i : i ≥ 0} is a homogeneous Markov chain with same transition matrix as that of
{Zi : i ≥ 0} with Z ′

0 = 2k1 − 2. Now, define τ ′1(k, l) as the stopping time for the process

8



198 Anuradha

{Z ′
i : i ≥ 0}. From the above discussion, we have that τ1(k, l) = T + t + 1 + τ ′1(k, l).

Further, if we define, N
(L)′

1 (k1) as the number runs of length at least k1 up to time

τ ′1(k, l) for the process {Z ′
i : i ≥ 0}, we must have that N

(L)′

1 (k1) = n− 1. Therefore, we
have,

Px(N
(L)
1 (k1) = n | ZT+1 = 2k1 − 1, . . . , ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2)

= P(2m−2)(N
(L)′

1 (k1) = n− 1) = g
(E,2m−2)
1 (n− 1; k1). (14)

Now, the first term in (10) can be written as

Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 2)

= Px(N
(L)
1 (k1) = n | ZT+1 = 2k1 − 2, ZT = 2k1 − 1)

× Px(ZT+1 = 2k1 − 2 | ZT = 2k1 − 1)

= q2m−1Px(N
(L)
1 (k1) = n | ZT+1 = 2k1 − 2, ZT = 2k1 − 1). (15)

The arguments leading to equation (14) can now be repeated to conclude that

Px(N
(L)
1 (k1) = n | ZT+1 = 2k1 − 2, ZT = 2k1 − 1)

= P(2m−2)(N
(L)′

1 (k1) = n− 1) = g
(E,2m−2)
1 (n− 1; k1). (16)

The last term in (10) can be similarly written as

Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 1, . . . , ZT+k2−1 = 2k1 − 1, ZT+k2 = 2k1 − 1)

=

k2∏
j=1

Px(ZT+j = 2k1 − 1 | ZT = 2k1 − 1, ZT+1 = 2k1 − 1, . . . , ZT+j−1 = 2k1 − 1)

× Px(N
(L)
1 (k1) = n | ZT = 2k1 − 1, ZT+1 = 2k1 − 1, . . . , ZT+k2 = 2k1 − 1)

=
(
p2m−1

)k2Px(N
(L)
1 (k1) = n | ZT+1 = 2k1 − 1, . . . , ZT+k2 = 2k1 − 1).

Note that given {ZT+1 = 2k1 − 1, . . . , ZT+k2−1 = 2k1 − 1, ZT+k2 = 2k1 − 1}, we have

τ1(k, l) = T +k2. Since this includes only run of length at least k1, we have N
(L)
1 (k1) = n

if and only if n = 1. In other words, Px(N
(L)
1 (k1) = n | ZT+1 = 2k1 − 1, . . . , ZT+k2−1 =

2k1 − 1, ZT+k2 = 2k1 − 1) = In(0) where I is the indicator function as defined in the
statement of the Theorem.

Thus combining the above equation with equations (10) - (16), we can express

g
(L,x)
1 (n; k1) = q2m−1g

(L,2m−2)
1 (n− 1; k1) +

k2−1∑
t=1

q2m−1

(
p2m−1

)t
g
(L,2m−2)
1 (n− 1; k1)

+
(
p2m−1

)k2In(1)
=

(
1−

(
p2m−1

)k2)g(L,2m−2)
1 (n− 1; k1) +

(
p2m−1

)k2In(1).

9
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This completes the proof.

We note that the right hand side of (9) does not involve the initial condition x ∈ Nm.

Therefore g
(L,x)
1 (n; k1) must be independent of x. So, we will drop x and denote the above

probability by g
(L)
1 (n; k1).

Corollary 3 For n ≥ 1, we have

g
(L)
1 (n; k1) =

(
1−

(
p2m−1

)k2)n−1(
p2m−1

)k2 . (17)

Clearly, the equation (9) can be easily solved. Indeed, for n = 1, we have

g
(L)
1 (1; k1) =

(
p2m−1

)k2

and for n ≥ 2, we have

g
(L)
1 (n; k1) =

(
1−

(
p2m−1

)k2)g(L)1 (n− 1; k1) =
(
1−

(
p2m−1

)k2)n−1
g
(L)
1 (1; k1)

=
(
1−

(
p2m−1

)k2)n−1(
p2m−1

)k2 .

Hence the corollary follows.

We can deduce that N
(L)
1 (k1) − 1 follows a geometric distribution with parameter(

p2m−1

)k2 taking values 0, 1, . . . . Hence, the generating function of N
(L)
1 (k1) is given by

ζ
(L)
1 (s; k1) =

(
p2m−1

)k2s
1−

(
1−

(
p2m−1

)k2)s
. (18)

For r > 1, again, we can derive a similar result.

Theorem 3 For n ≥ 1 and x ∈ Am, we have

g(L,x)r (n; k1) =
(
p2m−1

)k2+(r−1)(l+1)In(1) +
(
1−

(
p2m−1

)k2)g(L,2m−2)
r (n− 1; k1)

+
(
p2m−1

)k2(1− (
p2m−1

)l+1
) r−2∑

j=0

(
p2m−1

)j(l+1)
g
(L,2m−2)
r−1−j (n− 1; k1) (19)

where Iv1(v2) is the indicator function, as defined in the previous theorem.

Proof : We follow the similar strategy as in the previous theorem. We consider the
cases namely k2 = k − k1 = 0, i.e., k = k1 and k2 > 0, i.e., k > k1 separately. We study
the process from the time of the first occurrence of k1(= k) consecutive successes, i.e.,
T occurs. Note there can be no occurrence of runs of length at least k1 before this time,
so that part of the process does not contribute to the counting of runs of length at least
k1. For r ≥ 2, we have

g(L,x)r (n; k1) = Px

(
N

(L)
1 (k1) = n,ZT+1 = 2k1 − 1

)

10
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+

(r−1)(l+1)−1∑
t=1

Px

(
N

(L)
1 (k1) = n,ZT+1 = 2k1 − 1, . . . ,

ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2
)

+ Px

(
N

(L)
1 (k1) = n,ZT+1 = 2k1 − 1, ZT+2 = 2k1 − 1, . . . ,

ZT+(r−1)(l+1)−1 = 2k1 − 1, ZT+(r−1)(l+1) = 2k1 − 1
)
. (20)

Similarly for k2 > 0 and r ≥ 2, from the time of first occurrence of k1 consecutive
successes, we have

g(L,x)r (n; k1) = Px

(
N

(L)
1 (k1) = n,ZT+1 = 2k1 − 1

)

+

k2−1∑
t=1

Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 1, . . . ,

ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2)

+

k2+(r−1)(l+1)−1∑
t=k2

Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 1, . . . ,

ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2)

+ Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 1, ZT+2 = 2k1 − 1, . . . ,

ZT+k2+(r−1)(l+1)−1 = 2k1 − 1, ZT+k2+(r−1)(l+1) = 2k1 − 1). (21)

Now, the first term in both (20) and (21) are same and matches with the first term
in (10) in the proof of Theorem 2. Therefore, same arguments, as in (15), provide the
expression for this term. Indeed we have

Px

(
N

(L)
1 (k1) = n,ZT+1 = 2k1 − 1

)

= q2m−1Px

(
N

(L)
1 (k1) = n | ZT+1 = 2k1 − 2

)

= q2m−1P2m−1

(
N

(L)
1 (k1) = n− 1

)
= q2m−1g

(L,2m−1)
r−1 (n− 1; k1). (22)

The terms in summation in both (20) and (21) are similar to the terms in summation
in (10) in the proof of Theorem 2. However, there is a small difference in the first
summation in (21). In this case, no runs of length k will be completed as the index runs
from 1 to k2 − 1 and we need at least k2 = k − k1 successes after the occurrence of the
first consecutive k1 successes to complete a run of length k. Therefore, for the terms in
first summation in (21), we have

Px

(
N

(L)
1 (k1) = n,ZT+1 = 2k1 − 1, . . . , ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2

)

= q2m−1

(
p2m−1

)t
g(L,2

m−2)
r (n− 1; k1). (23)

For the other term in summation in (21) and the terms in the summation (20), at least
one l-look-back run will be completed. It is easy to check that the exact number of

11
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l-look-back runs completed is given by ⌊(t− k2)/(l+1)⌋ where ⌊a⌋ is the largest integer
smaller or equal to a. Thus, we have

Px(N
(L)
1 (k1) = n,ZT+1 = 2k1 − 1, . . . , ZT+t = 2k1 − 1, ZT+t+1 = 2k1 − 2)

= q2m−1

(
p2m−1

)t
g
(L,2m−2)
i (n− 1; k1) (24)

where i = ⌊(t− k2)/(l + 1)⌋.
The final terms in both cases are similar and can be dealt in the exact same way as

done for the last term in previous Theorem. Indeed, the same calculations yield

Px

(
N

(L)
1 (k1) = n,ZT+1 = 2k1 − 1, ZT+2 = 2k1 − 1, . . . ,

ZT+k2+(r−1)(l+1)−1 = 2k1 − 1, ZT+k2+(r−1)(l+1) = 2k1 − 1
)

=
(
p2m−1

)k2+(r−1)(l+1)In(1). (25)

Now, for k2 = 0, using (20) and combining the equations (22), (23), (24) and (25),
we obtain

g(L,x)r (n; k1)

=
r−2∑
j1=0

l∑
j2=0

q2m−1

(
p2m−1

)j2+j1(l+1)
g
(L,2m−2)
r−1−j1

(n− 1; k1) +
(
p2m−1

)(r−1)(l+1)In(1)

=
(
1−

(
p2m−1

)l+1
) r−2∑

j=0

(
p2m−1

)j(l+1)
g
(L,2m−2)
r−1−j (n− 1; k1) +

(
p2m−1

)(r−1)(l+1)In(1).

For k2 > 0, using (21) and combining the equations (22), (24) and (25), we obtain

g(L,x)r (n; k1) =

k2−1∑
t=0

q2m−1

(
p2m−1

)t
g(L,2

m−2)
r (n− 1; k1)

+
r−2∑
j1=0

l∑
j2=0

q2m−1

(
p2m−1

)k2+j1(l+1)+j2g
(L,2m−2)
r−1−j1

(n− 1; k1) +
(
p2m−1

)k2+(r−1)(l+1)In(1)

=
(
1−

(
p2m−1

)k2)g(L,2m−2)
r (n− 1; k1)

+
(
p2m−1

)k2(1− (
p2m−1

)l+1
) r−2∑

j=0

(
p2m−1

)j(l+1)
g
(L,2m−2)
r−1−j (n− 1; k1)

+
(
p2m−1

)k2+(r−1)(l+1)In(1).

This completes the proof.

We first show that g
(L,x)
r (·; k1) independent of x ∈ Am. We have proved this for

r = 1 (see Corollary 3). Now, assume that g
(L,x)
r (·; k1) independent of x ∈ Am. Using

equations (19), we have that g
(L,x)
r+1 (·; k1) can be expressed as weighted sums of g

(L,x)
i (·; k1)

12
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for i = 1, 2, . . . , r. Since the right hand side of the equation (19) does not involve any

x ∈ Am, g
(L,x)
r+1 (·; k1) must be independent of x. Therefore, from now on we will drop the

superscript x from the notation and denote it by g
(L)
r (·; k1). This may be summarised

as follows:

Lemma 1 For any x ∈ Am and r ≥ 1, the probability g
(L,x)
r (n; k1) = Px(N

(L)
r (k1) = n)

is independent of x. Further, for r ≥ 2, g
(L,x)
r (n; k1) satisfies the recurrence relation

g(L)r (n; k1)

=
(
p2m−1

)k2+(r−1)(l+1)In(1) +
(
1−

(
p2m−1

)k2)g(L)r (n− 1; k1)

+
(
p2m−1

)k2(1− (
p2m−1

)l+1
) r−2∑

j=0

(
p2m−1

)j(l+1)
g
(L)
r−1−j(n− 1; k1). (26)

Next we concentrate on deriving the generating function of {g(L)r (n; k1) : n ≥ 0}.
Now, using the relation (26), we can easily develop the recurrence relation between the

generating functions of N
(L)
r (k1). Let us denote the probability generating function of

N
(L)
r (k1) by ζ

(L)
r (s; k1), i.e.,

ζ(L)r (s; k1) =
∞∑
n=0

skg(L)r (n; k1).

The probability generating function ζ
(L)
r (s; k1), for r ≥ 2 and k2 ≥ 0, is given by

ζ(L)r (s; k1) =
(
p2m−1

)k2+(r−1)(l+1)
s+

∞∑
n=1

(
1−

(
p2m−1

)k2)g(L)r (n− 1; k1)s
n

+
(
p2m−1

)k2(1− (
p2m−1

)l+1
) ∞∑

n=0

r−2∑
j=0

(
p2m−1

)j(l+1)
g
(L)
r−1−j(n− 1; k1)s

n

=
(
p2m−1

)k2+(r−1)(l+1)
s+

(
1−

(
p2m−1

)k2)sζ(L)r (s; k1)

+
(
p2m−1

)k2(1− (
p2m−1

)l+1
)
s

r−2∑
j1=0

(
p2m−1

)j1(l+1)
ζ
(L)
r−1−j1

(s; k1).

Simplifying, we obtain the following lemma.

Lemma 2 For r ≥ 2, the sequence of probability generating functions {ζ(L)r (s; k1) : r ≥
1} satisfies the recurrence relation

[
1−

(
1−

(
p2m−1

)k2)s
]
ζ(L)r (s; k1)

=
(
p2m−1

)k2(1− (
p2m−1

)l+1
)
s

r−2∑
j1=0

(
p2m−1

)j1(l+1)
ζ
(L)
r−1−j1

(s; k1)

+
(
p2m−1

)k2+(r−1)(l+1)
s. (27)

13
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Proof of Theorem 1: Let us define by Ξ(L)(z; k1) the generating function of the

sequence {ζ(L)r (s; k1) : r ≥ 1} , i.e.,

Ξ(L)(z; k1) =

∞∑
r=1

ζ(L)r (s; k1)z
r.

Now, using Lemma 2 and expression in (18), consider
[
1−

(
1−

(
p2m−1

)k2)s
]
Ξ(L)(z; k1)

=

[
1−

(
1−

(
p2m−1

)k2)s
]
ζ
(L)
1 (s; k1)z +

∞∑
r=2

s
(
p2m−1

)k2+(r−1)(l+1)
zr

+
(
p2m−1

)k2(1− (
p2m−1

)l+1
)
s

∞∑
r=2

r−2∑
j=0

(
p2m−1

)j(l+1)
ζ
(L)
r−1−j(s; k1)z

r

=
(
p2m−1

)k2sz + (
p2m−1

)k2sz
∞∑
r=1

(
p2m−1

)r(l+1)
zr

+
(
p2m−1

)k2(1− (
p2m−1

)l+1
)
s

∞∑
j=0

∞∑
r=j

(
p2m−1

)j(l+1)
ζ
(L)
r−j+1(s; k1)z

r+2

=

(
p2m−1

)k2sz
1−

(
p2m−1

)(l+1)
z
+ szΞ(L)(z; k1)

(
p2m−1

)k2(1− (
p2m−1

)l+1
) ∞∑

j=0

(
p2m−1

)j(l+1)
zj

=

(
p2m−1

)k2sz
1−

(
p2m−1

)(l+1)
z
+

szΞ(L)(z; k1)
(
p2m−1

)k2(1− (
p2m−1

)l+1
)

1−
(
p2m−1

)(l+1)
z

. (28)

Now the above equation (28) yields the expression of Ξ(L)(z; k1) as

Ξ(L)(z; k1) =

[(
p2m−1

)k2sz
][(

1−
(
p2m−1

)l+1
z
) [

1−
(
1−

(
p2m−1

)k2)s
]

− sz
(
p2m−1

)k2(1− (
p2m−1

)l+1
)]−1

=

[(
p2m−1

)k2sz
] [

1−
(
1−

(
p2m−1

)k2)s
]−1

×

[
1−

(
p2m−1

)l+1
z −

sz
(
p2m−1

)k2(1− (
p2m−1

)l+1
)

[
1−

(
1−

(
p2m−1

)k2)s
]

]−1

= z

[(
p2m−1

)k2s
] [

1−
(
1−

(
p2m−1

)k2)s
]−1

×

[
1− z

((
p2m−1

)l+1
+

s
(
p2m−1

)k2(1− (
p2m−1

)l+1
)

[
1−

(
1−

(
p2m−1

)k2)s
]

)]−1

(29)

14
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The coefficient of zr yields the expression for ζ
(L)
r (s; k1). Thus, we see that coef-

ficient of zr is given by multiplying the coefficient of zr−1 in the last line of equation

(29) by

[(
p2m−1

)k2s
] [

1−
(
1−

(
p2m−1

)k2)s
]−1

. Using the expansion (1 − az)−1 =
∑∞

n=0(az)
n =

∑∞
n=0 a

nzn, we have

ζ(L)r (s; k1)

=

[(
p2m−1

)k2s
] [

1−
(
1−

(
p2m−1

)k2)s
]−1

×
[(
p2m−1

)l+1
+

s
(
p2m−1

)k2(1− (
p2m−1

)l+1
)

[
1−

(
1−

(
p2m−1

)k2)s
]

]r−1

=

[ (
p2m−1

)k2s
1−

(
1−

(
p2m−1

)k2)s

][(
p2m−1

)l+1
+

(
p2m−1

)k2s
1−

(
1−

(
p2m−1

)k2)s
(
1−

(
p2m−1

)l+1
)]r−1

.

This completes the proof of the theorem.
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